
1 | P a g e

The Append Operator in Ruby.

In mathematics, an operator is a symbol, such as:

+

or:

−

that performs an arithmetic work such as:

addition

or:

subtraction

respectively.

‘Operator’ is Latin for ‘worker.’

Programming is no different when it comes to its operators. If you wish for a

program to work, you must use operators!

In Ruby:

≪

is the append operator.

In anatomy, appendages, such as arms and legs, are those organs that hang on

to the trunk, or core.

The term ‘to append,’ etymologically, means ‘to hang [something] on to

[something.]’

2 | P a g e

‘pendō (present infinitive: ‘pendere,’ perfect active: ‘pependī,’ supine:

‘pensum’); third conjugation.

is the Latin verb, ‘to hang.’

‘ad’

 is the Latin preposition that means:

 ‘to, toward.’

Affix the preposition, ‘ad,’ to the verb, ‘pendō,’ and we get ‘appendō,’ which is

the Latin verb, ‘to hang [something] towards [something else.]’

In Ruby programming, we can assign a string-literal value to a variable like so:

a = “Hello”

In Ruby, strings are mutable1

Should we wish the variable:

a

to contain the string-literal data:

“Hello, world!”

we could simply reassign the variable:

a

1 From the Latin 1st-conjugation verb, ‘mūtō, mūtāre, mūtāvī, mūtātus,’ which

means ‘to change,’ and the Latin 3rd-declension adjective, ‘habilis, habile,’

which means ‘having,’ whence we derive the Latin adjective-making suffix, ‘-

abilis, -abile.’ Combine the Latin verb, ‘mūtō,’ with the suffix, ‘-abilis, -abile’

and we get the 3rd-declension Latin adjective, ‘mūtābilis, mūtābile,’ which

denotes something that has [the ability] to change. In Ruby Programming, as

distinct from other programing languages, strings have the ability to change.

https://en.wiktionary.org/wiki/Appendix:Latin_third_conjugation

3 | P a g e

to:

“Hello, World!”

thus:

a = “Hello, world!”

but this is not necessary! A more efficient way would be to append the string-

literal data:

“, world!”

to the string-literal value:

“Hello”

by using the append operator:

<<

The following is how we do it2:

a = “Hello” ↵

=> “Hello”

a ↵

=> “Hello”

a << “, world!” ↵

=> “Hello, world!”

a ↵

=> “Hello, world!”

2 The arrows, ↵ , represent the pressing of the return key.

4 | P a g e

Below is an image of this appending’s being done in an Interactive Ruby

Window:

5 | P a g e

Figure 1: This is a screenshot that I took with Snipping Tool, a Windows-10

application. Because “world” is, in this instance, in the vocative case, i.e. the

case of direct address – you are saying “hello” to it, remember! – in English

punctuation, a comma must, therefore, go before it.

