
1 | P a g e

Python Dictionary:

2 | P a g e

3 | P a g e

(Preceding Page) Figure 1: In this chapter, we are going to use a snooker table,
and a dart board, so as to come to grips with dictionaries.

When commencing the science known as computer programming, it is soon
discovered that a lot of the skills, that must be learned, so as to become
competent in this profession, has to do with ordering data.

We have already seen two other ways that we may order data, i.e. lists and
tuples1.

What concerns us now is dictionaries.

Dictionaries are Python-specific, which means that they do not really exist in
other programming languages.

Python Dictionaries have been compared with Associative Arrays2 in other
programming languages, though.

In Python, a Dictionary is an unordered Database of sorts. In a dictionary, each
datum has a unique numeric key associated with it.

It is not possible, in dictionaries, to assign two pieces of data to the same
numeric key. This is a rule consistent with most databases. Indeed, the
definition of a ‘database’ is a table of data, where each row of the table is
assigned a unique numeric key. If one were to assign to two rows of a table of
data the same numeric key, then that table of data would then cease, by that
very deed, to be a database.

In a Python dictionary, we assign each datum a unique numeric value, or key.
Hence, in Python, a dictionary is a type of database.

In a dictionary, the numeric values that we assign to objects must be unique.
The numeric values need not be in numeric order. One could have a dictionary
containing merely two pieces of data, one having a numeric key of 1, and the
other having a numeric key of 60:

1 Please see the relevant chapters on LISTS and TUPLES.
2 Please see the relevant chapter on ARRAYS.

4 | P a g e

Figure 2: Apart from darts that miss the dartboard completely – humorously
termed ‘masonry darts’ – or darts that ricochet off the metal stripes, the
minimum score from one throw is 1. The maximum score from one throw is
60. Below, we contrive a dictionary so as to represent this data.

>>>dart_scores_on_one_throw = {"Minimum Score":1, "Maximum
Score":60}↵

>>> print(dart_scores_on_one_throw)↵

{'Maximum Score': 60, 'Minimum Score': 1,}

5 | P a g e

Figure 3: We have created our first dictionary. See how, when we ask it to
print out our dictionary, it does not output the data in the same way that we
inputted it, i.e. in numeric order. Remember: a dictionary is an unordered
assortment of data.

We are going to create another dictionary. This dictionary will be a little more
complex, in that it will concern the values of balls on a snooker table:

6 | P a g e

7 | P a g e

(Preceding Page) Figure 4: The values of balls on a snooker table. We are
going to create a dictionary in Python so as to express the above information.

>>>snooker_dictionary = {"Red":1, "Yellow":2, "Green":3, "Brown":4,
"Blue":5, "Pink":6, "Black":7}↵

>>>print(snooker_dictionary)↵

{'Red': 1, 'Yellow': 2, 'Green': 3, 'Brown': 4, 'Blue': 5, 'Pink': 6, 'Black': 7}

Figure 5: Above is the Python code that we use to create our Python
Dictionary.

We employ:

snooker_dictionary

as our dictionary’s variable name. We then assign to that variable, the
dictionary value:

{"Red":1, "Yellow":2, "Green":3, "Brown":4, "Blue":5, "Pink":6, "Black":7}

by using the assignment/assignation operator:

=

.

8 | P a g e

We ask Python to print the snooker dictionary:

print(snooker_dictionary)

and Python outputs:

{'Red': 1, 'Pink': 6, 'Black': 7, 'Green': 3, 'Yellow': 2, 'Blue': 5, 'Brown': 4}

Figure 5: The code necessary to create a dictionary and its output. Note how
Python outputs the dictionary neither how we entered it; neither in alphabetical
order; neither in numerical order. Again, a dictionary is an unordered database
of sorts.

It is possible for us, once a dictionary has been created, to split a dictionary up
into separate values. We can do this through the following code:

9 | P a g e

>>>snooker_dictionary = {"Red":1, "Yellow":2, "Green":3, "Brown": 4,
"Pink":6, "Black":7}↵

 >>>print(snooker_dictionary)↵

 {'Blue': 5, 'Red': 1, 'Yellow': 2, 'Brown': 4, 'Pink': 6, 'Green': 3, 'Black': 7}

>>>for a in snooker_dictionary:↵
 print(a, snooker_dictionary[a])↵

 Blue 5

 Red 1

 Yellow 2

 Brown 4

 Pink 6

 Green 3

 Black 7

10 | P a g e

Figure 6: What the above code looks like in a Python Interactive
window.

A dictionary is a value in and of itself. This value, we assigned to the variable:

snooker_dictionary

.

By executing the above code, we have extracted the component values of the
dictionary value.

There is another useful thing that we can do to dictionaries: we can append new
terms to it.

11 | P a g e

In anatomy, appendages, such as arms and legs, are those organs that hang on
to the trunk, or core.

The term ‘to append,’ etymologically, means ‘to hang [something] on to
[something.]’

present active: ‘pendō,’ present infinitive: ‘pendere,’ perfect active: ‘pependī,’
supine: ‘pensum’; third conjugation.

is the Latin verb, ‘to hang.’

‘ad’

 is the Latin preposition that means:

 ‘to, toward.’

Affix the preposition, ‘ad,’ to the verb, ‘pendō,’ and we get ‘appendō,’ which is
the Latin verb, ‘to hang [something] towards [something else.]’

In Python, we can append or hang another [component value] on to our
dictionary.

We are able to change dictionaries. This means that dictionaries, in programing
jargon, are mutable3.

Let us return to our:

snooker_dictionary

and let us imagine a rule change, the addition of a purple ball of value: 8.

3 From the Latin 1st-conjugation verb, ‘mūtō, mūtāre, mūtāvī, mūtātus,’ which
means ‘to change,’ and the Latin 3rd-declension adjective, ‘habilis, habile,’
which means ‘having,’ whence we derive the Latin adjective-making suffix, ‘-
abilis, -abile.’ Combine the Latin verb, ‘mūtō,’ with the suffix, ‘-abilis, -abile’
and we get the 3rd-declension Latin adjective, ‘mūtābilis, mūtābile,’ which
denotes something that has [the ability] to change. In Python Programming,
dictionaries have the ability to change.

https://en.wiktionary.org/wiki/Appendix:Latin_third_conjugation

12 | P a g e

 Figure 7: The purple ball. Just imagine the possibilities!

13 | P a g e

14 | P a g e

(From Preceding Page) Figure 8: We shall position the purple ball just
above the blue, I think.

The rules of snooker have been changed, which necessitates a change in the
value of our:

snooker_dictionary

variable. Luckily, dictionaries are mutable, and it will not be difficult for us to
amend our dictionary so as to reflect the addition of a purple ball into the game
of snooker:

>>> snooker_dictionary = {"Red":1, "Yellow":2, "Green":3, "Brown":4,
"Blue":5, "Pink": 6, "Black": 7}↵

>>> print(snooker_dictionary) ↵

{'Yellow': 2, 'Green': 3, 'Brown': 4, 'Black': 7, 'Red': 1, 'Pink': 6, 'Blue': 5}

>>> snooker_dictionary['Purple'] = 8↵

>>> print(snooker_dictionary)↵

{'Yellow': 2, 'Green': 3, 'Purple': 8, 'Brown': 4, 'Black': 7, 'Red': 1, 'Pink':
6, 'Blue': 5}

>>>

From the above code, we can garner that it is the:

snooker_dictionary['Purple'] = 8

piece of code that appends the value:

'Purple': 8

to our pre-existing dictionary.

15 | P a g e

Figure 8: What the code looks like executed in a Python Interactive Window.

In Conclusion:
In this chapter we have examined what a dictionary is – a type of unordered
database; created a dictionary; extracted component values from a dictionary;
and we have also appended new information to a dictionary. For a beginner
programmer, such as yourself, the reader, this is all you will be required to
know of this topic at the moment.

Dictionaries are a kind of an array, which means that a Dictionary can be a sub-
element in another dictionary; a super-dictionary. We do not need to examine
multidimensional dictionaries yet, though.

	In Conclusion:

