
1 | P a g e

Flow Control Statements

Figure 1: I drew the above segment of a Flowchart Algorithm in

Microsoft Word.

In programming, statements such as:

if

, which introduce a condition, are known as:

flow-control statements

.

2 | P a g e

One way to conceive of Computer Algorithms, is to represent them as

Flowcharts. The:

if

statement alters or controls the flow of the algorithm.

In the above depicted example1, if the condition tested by the:

if

statement should be found to be true, then the logical execution of the algorithm

will flow down the left-hand side of the page.

In the above depicted example, if the condition tested by the:

if

statement should be found to be false, then the logical execution of the

algorithm will flow down the right-hand side of the page.

When we introduce a logical split into our algorithm, then this is termed:

 ‘branching’

.

The true and false tributaries of the depicted flow-chart algorithm are termed:

‘branches’

.

1 i.e. the example depicted in Figure 1.

3 | P a g e

4 | P a g e

Figure 2: The algorithm branches. We can instruct the computer to do

different tasks depending upon whether the logical condition tested by the

if statement be found true or false.

Figure 3: In this segment of a Flowchart Algorithm, we can see that

it branches after we test a logical condition with an if statement. In the

depiction, above, we can observe the true branch of the Algorithm, and

the false branch of the Algorithm.

5 | P a g e

Start

Display:

Please enter a 1 or a 0

Declare Variable:

integer boolean_input

User inputs a 1 or a 0

or another literal.

Assign the value of the variable, boolean_input ,

to the value that the user has entered.

IF

boolean_input == 1

Display:

 boolean_input = true

Display:

 boolean_input is not a

valid Boolean-input value

boolean_input != 1 OR 0

boolean_input == 0

Display:

 boolean_input = false

Display:

 Goodbye!

Finish

6 | P a g e

On the previous page, we have a flow-chart algorithm that describes a program

that takes an integer – either a 1 or a 0 – inputted by the user, and which outputs

a string contingent upon what the user has inputted.

The above algorithm solves a computational problem. The computational

problem that the above algorithm solves may be stated as:

How can we test a litteral inputted by a user so as to see if it should equate to

 Boolean True or Boolean False?

7 | P a g e

Mutual Exclusion:
The:

true

 and:

 false

branches of this algorithm are termed:

‘mutually exclusive’

.

A logical test is performed, and if that which is tested be true then that excludes

the possibility of its being false.

A logical test is performed, and if that which is tested be false then that excludes

the possibility of its being true.

If the true branch of the algorithm be executed, then the false branch of the

algorithm will not be executed.

If the false branch of the algorithm be executed, then the true branch of the

algorithm will not be executed.

8 | P a g e

Branching in Python:

We shall now write a program in Python that corresponds to the algorithm

depicted on Page 5.

9 | P a g e

Figure 4: This is the python program that corresponds to the algorithm

on Page 5.

Figure 5: This is what is outputted by the Python program depicted in

Figure 4 should the user input the value, 0.

10 | P a g e

Figure 6: This is what is outputted by the Python program depicted in

Figure 4 should the user input the value, 1.

Figure 7: This is what is outputted by the Python program depicted in

Figure 4 should the user input a literal that is not a 1 or a 0.

11 | P a g e

More on Branching in Algorithms in General:
As we can see from the algorithm depicted on Page 5, the:

true

and:

false

branches of the algorithm converge or attain a confluence prior to the:

“Goodbye!”

string’s being outputted.

The:

“Goodbye!”

string will be outputted regardless of the result of the logical condition tested by

the:

if

statement.

12 | P a g e

Back to If Statements in Python:
One quintessential piece of Python syntax is the colon. The colon is used to

declare that what follows will be an indented code block.

13 | P a g e

Figure 8: In Python, if statements are always terminated by colons. In

Python, the colon always declares that the preceding code block will be

indented. The code block that follows the colon that terminates the if

statement is indented2.

2 In Python style, an indent is worth 4 spaces.

14 | P a g e

Back to Branching in Algorithms in General:
Trees are not the only things that branch. Rivers also branch into tributaries.

Rivers also flow downwards3, and so it is an excellent analogy so as to conceive

of branching in algorithms.

3 As does a flow-chart algorithm.

15 | P a g e

16 | P a g e

Figure 9: Another way to conceive of branching in flow-chart

algorithms: the flow-chart algorithm branches into true and false code

blocks after a logical condition is tested, before re-attaining a confluence

prior to “Goodbye” being printed. The two tributaries of the flow-chart

algorithm merge together again prior to “Goodbye” being printed.

Regardless of whether the true code block or the false code block be

executed, “Goodbye” will nonetheless be printed.

17 | P a g e

What is the Purpose of Writing an Algorithm prior to

Writing a Program?
An algorithm is imperative4 knowledge. It tells one how to do something. In

computing, an algorithm tells one how to solve a computational problem.

In computing, an algorithm is a series of commands that solves a computational

problem.

There are two approaches to programming:

Seat-of-the-Pants Method:
With this method, the programmer just dives into writing the program.

However, the programmer still composes an algorithm, only this time, the

algorithm is mental. At each stage of his writing a program, the programmer

still must imagine what he must command the computer to do for it to solve a

computational problem. The programmer just does not take the time to write

this series of commands or algorithm down.

Write-the-Algorithm-First Method:
With this method, the programmer solves the computational problem first prior

to his commencing writing the program. He does this by writing an algorithm.

The advantage of writing an algorithm is that it does not limit the programmer

to a solution in a single language such as Python. Should the programmer take

the time to write out the algorithm first, then it will allow him to easily compose

a program that corresponds to that algorithm not only in Python, but in whatever

programming language that he should so choose.

4 From the Latin 1st-conjugation verb, ‘imperō, imperāre, imperāvī, imperātum,’

which means: ‘to command,’ ‘to order.’ Cp. Latin English Lexicon: Optimized

for the Kindle, Thomas McCarthy, (Perilingua Language Tools: 2013) Version

2.1 Loc 46105.

18 | P a g e

 Writing a Program that Corresponds to our Algorithm in

C:
On Page 5, we wrote an algorithm that solved a computational problem. The

computational problem that was solved by the algorithm depicted on page 5 can

be stated as:

How can we test a litteral inputted by a user so as to see if it should equate to

 Boolean True or Boolean False?

With the above-stated computational problem solved, we can now easily write a

program that corresponds to the algorithm, not only in Python syntax, but in C

syntax, as well.

19 | P a g e

Figure 10: The C program that corresponds to the algorithm depicted on

Page 5.

20 | P a g e

Figure 11: What the C program depicted in Figure 10 outputs should

the user input a 0.

Figure 12: What the C program depicted in Figure 10 outputs should

the user input a 1.

21 | P a g e

Figure 13: What the C program depicted in Figure 10 outputs should

the user input a literal that is neither a 0 or a 1.

22 | P a g e

Glossary:
confluence

 noun. the junction of two rivers, especially rivers of approximately

equal width.

 an act or process of merging: a major confluence of the

world’s financial markets.

<ORIGIN> late Middle English: from late Latin confluentia, from Latin

confluere ‘flow together’ (see CONFLUENT).5

<ETYMOLOGY> From the Latin 1st-declension feminine noun,

‘conflŭentĭa, conflŭentĭae,’ which means ‘a flowing together.’6 From the

Latin preposition, ‘cum,’ which means ‘together;’ and the Latin 3rd-

conjugation verb, ‘fluō, fluere, fluxī, fluxum,’ which means ‘to flow;’ and

the Latin 1st-declension nominal suffix, ‘-tia, -tiae,’ which denotes a state

of being. A confluence, therefore, etymologically, is ‘a flowing

together.’

As regards algorithms, by way of an analogy, a confluence can be said to

describe the merging of two or more branches of a flow-chart algorithm.

5 Oxford University Press. Oxford Dictionary of English (Electronic Edition).

Oxford. 2010. Loc 146068.
6 Cp. Latin English Lexicon: Optimized for the Kindle, Thomas McCarthy,

(Perilingua Language Tools: 2013) Version 2.1 Loc 23064.

23 | P a g e

confluent

 adjective. flowing together or merging.

<ORIGIN> late 15th century: from Latin confluent- ‘flowing together’,

from confluere, from con- ‘together’ + fluere ‘to flow’.7

<ETYMOLOGY> From the Latin 3rd-declension masculine noun,

‘cōnfluēns, cōnfluēntis,’ ‘ which means ‘confluence.’ ‘flowing together.’

From the Latin preposition, ‘cum,’ which means ‘together;’ and the Latin

present active participle, ‘fluēns, fluēntis,’ which means ‘flowing.’

As regards algorithms, by way of an analogy, two or more branches of an

algorithm can be said to be confluent when they merge together.

7 Oxford University Press. Oxford Dictionary of English (Electronic Edition).

Oxford. 2010. Loc 146082.

24 | P a g e

imperative
 adjective.

1. of vital importance; crucial: immediate action was

imperative | [with clause] it is imperative that standards

are maintained.

2. giving an authoritative command; peremptory: the bell

pealed again, a final imperative call.

o [GRAMMAR] denoting the mood of a verb that

expresses a command or exhortation, as in come

here!

 noun.

1. an essential or urgent thing: free movement

of labour was an economic imperative.

 a factor or influence making something

necessary: the biological imperatives which

guide male and female behaviour.

2. [GRAMMAR] a verb or phrase in the

imperative mood.

 (the imperative) the imperative mood.

<DERIVATIVES> imperatival adjective. imperatively adverb. imper

ativeness noun.

<ORIGIN> late Middle English (as a grammatical term): from Late

Latin imperativus (literally ‘specially ordered’, translating

Greek prostatikē enklisis ‘imperative mood’), from imperare ‘to

command’, from in- ‘towards’ + parare ‘make ready’8.

<ETYMOLOGY> from the Latin 1st-and-2nd-declension adjective,

‘impĕrātīva, impĕrātīvus, impĕrātīvum,’ which means ‘pertaining to

the command;’ ‘of the command.’ From the Latin 1st-conjugation verb,

‘imperō, imperāre, imperāvī, imperātum,’ which means ‘to command,’

‘to order,’ and the Latin 1st-and-2nd-declension adjectival suffix ‘-īva, -

īvus, -īvum,’ which means ‘of,’ ‘concerning,’ ‘pertaining to.’ From the

Latin prefix ‘in-’ which expresses the concept of ‘unto,’ ‘toward,’ and the

Latin 1st-conjugation verb, ‘parō, parāre, parāvī, parātum,’ which means

‘to make ready,’ ‘to prepare.’ The etymological sense, therefore, of the

English adjective, ‘imperative’ is: ‘concerning the command;’ ‘pertaining

to the command;’ ‘of the command;’ ‘concerning the order;’ ‘pertaining

to the order;’ ‘of the order;’ ‘concerning the making ready of;’ ‘pertaining

to the making ready of;’ ‘of the making ready of;’ etc.

8 ibid. Loc 345790

25 | P a g e

 As regards algorithms, ‘imperative’ denotes the type of knowledge

expressed by a series of commands, as opposed to declarative knowledge.

